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Considered are linear differential equations with periodic and almost
periodic coefficients and with stationary lags [delays] in the argument.
The application of the Laplace transform leads to the solution of linear
Diophantine equations. The terms of the series of the transforms consti-
tute semigroups for which there is established an isomorphism with the
group of certain generalized numbers.

This isomorphism simplifies the computations and makes it possible to
investigate the stability of the quasi-stationary equations. In parti-
cular, an asymptotic criterjon for stability of the solutions of a second
order linear differential equation, with almost periodic coefficients is
obtained.

1. We shall consider the following system of linear differential equa-
tions [1]

i . &Y (0 n-—1 0
Sle- q:(Aq,, —a + 3 { dda (9)

=0 k=0 —-h

Y (t 4+ 9)
T) —or)  (1.1)

Here Y is an m-dimensional vector; the Aqn are constant m x m matrices
satisfying the conditions

4
Am=E, 3| 4nl<t (1.2)
g=1

where E is the unit matrix, and IA, denotes the norm (1.2) of the matrix
A. The number ! is assumed to be finite.
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The elements asj‘?k(ﬁ) of the matrix Aqk(ﬁ) = H asjqk(ﬁ) H L are
assumed to be functions of bounded variation [2] on " [-h, 0], (h> 0).
The integrals in (1.1) are Stieltjes integrals [2].

We shall assume* that

oo =0, Reag=0 g=1,..., 1) (1.3)

Among the numbers Im «_ there may be non-commensurate numbers. Suppose
that the transform of a vector ®(t) (¢t >>0) is the vector Q(p), which is
regular and bounded when Re p =>b = const. We are looking for a solution
Y(t), with t > 0, of the system (1.1) that will satisfy, when t e={-h,0],
the initial conditions

Y(O) =Y @,..., &Y @)/d" " =Y (1.4)

Here it is sufficient to assume that the vectors Yo(j) (=01 ...,
n — 1) are absolutely integrable on [-h, 0]. The vectors Y(t), ...,
d™1Y(t)/dt™ ! are assumed to be continuous from the right at the point
t = 0.
Denoting the Laplace [3] transform of Y(t) by F(p), we have
o0
F (p) =S Y (t)e-Ptdt (1.5)
]
Multiplying the terms of the system (1.1} by e P! and integrating the
results with respect to t from 0 to + », we obtain the following system
of linear difference equations for the vector F(p)

1
Fp)y= K (p) F (p+ag) + 2 (p) (1.6)
g=1
Here we have introduced the following notation [1]

Ki(p)=—L*(p) Ly (p +ag), R(p) =L (p) R (p) 1.7

The matrices Lq(p) and the vector R(p) are known [1]

n—1 0

Ly (p) = 4anp” + 3 7 | e®dda®)  @=01,....p  (8)

k=0 —h

* The general case Re g 20 in (1.1) can be reduced to the case (1.3).
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]
R(p)=0Q(p)+ 2 Agn Z Y & 0) (p + ag)™1 +
9=0 i=0

1 n-—2 'n—l

+35 3 S D% A, (8) Yo (0) (p + ag)t—i—t —
Q=0 j =0 k=j+1 —h
! n—10 0

=3 3 [0 aan @) Yo ¢ de (1.9

q=0 K==0 —~h {

We shall point out the most important properties of Lq(p), and Q(p);
i.e.

p"Ly(p) — Agn, Q(p) -0 whenRep — + o (1.10)

The convergence is uniform in Im p. From (1.2) it follows that if
Re p >b, where b is a sufficiently large number, then the solution F(p)
of the equation (1.6) can be obtained by the method of successive approxi-
mations [2, p.45]. This yields [1]
(1.11)

Fp)=2®m+ 3 D Kulp)Key(p+agq)XKq (p+ ag, + agy) X

g=1 q; =1, 000,d
X Koo (ptag,+0gy-+. . .+agq, ) Q (ptog;+ag, + . . .+agq,)

The series (1.11) for F(p) converges when Re p >>b. The original Y(t)
obtained from the series (1.11) will be a series that converges abso-
lutely and uniformly when 0 <t XT < », For a system of differential
equations with almost periodic coefficients, this series will differ but
little from the series obtained in [3]. The series (1.1) and its original
do not yield directly a way for solving the problem on the stability of
the solution of (1.1).

2. In this se¢tion we indicate a relationship between the investiga-
tion of the system (1.1) and the study of linear Diophantine equations.

Let us associate in a one-to-one way the generalized number [y, o]
(x, o are non-negative integers) with the product of the matrices (1.7)
of the form

Kﬁx (P)Kq‘ (p +a¢b)KQs(p +a91 +a<}3) .. 'qu (p +an+G’Qs+ v '+aqc)
(2.1)

=@ —D+@—DI+@—-DE+.. . +(@ -
<< —1 (2.2)
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We let the unit matrix E correspond to the number [0,0]. We shall de-
note this correspondence by a double-headed arrow «»; thus we have, e.g.
K,(p)K,(p + a,) < [1,2].

The indicated correspondence (isomorphism) is one-to-one, since every
integer x can be expressed in a unique way in the scale of notation to
the base [. The sums and differences of products of matrices of the type
(2.1) will correspond to numbers [y, o] connected by plus and minus

signs.

Example 2.1. Let us find the matrix which will correspond to the sum

421+ 1.2+ [142] + 11,21 + ... (=9 (2.3)

Expressing the numbers 4, 1, 14, 11 in the scale of notation to the
base [radix] 4, we obtain from (2.1) and (2.2)

Kx@Ke(p+ o)+ Ke (P K1 (p+ 02) + Ks(P) Ko (p+ 25) + Ke (P) Ka (p+ ) +- . . . (2.4)

In order to preserve the correspondence (2.1), (2.2), it is necessary
to give a rule for mltiplying the numbers [x, ol. This rule is the
following non-commutative relation

(%1 1) [%2s O3] = [%1 + Ael™, 01 + 04 (2.5)

From (2.5) it follows that any number [x, oJ(o > 0) that corresponds
to (2.1), can be represented as the product

Iy, ol = g, — 1,11 [gs — 1,11 . .. [g, — 1,11 = [2 (g, — 1), o] (2.6)

k=1

With every number [x, o] we associate the numbers [, o] (Y) of the
form

[y, 61 = [2 (¢, —1) o — 'r] (r=1,...,0—1) (2.7)

k=1
These numbers will be called the derived numbers for [x, o]. By de-

finition we write

Ix, o1® = [x, o], ix, o1 = [0, 0] (2.8)

Let us consider the function a([x, o]), defined in the following way
for the number [x, o] corresponding to (2.1)

a([x,0l) =aq +ag+ ...+ qq, a([0,0))=0 2.9)
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From the definition of multiplication (2.5) and the expression (2.9)
for the function a, follows the fundamental property of a{ly, ol):

@ ([%1 03] [Xar 03)) = @ ([Xa, 04]) + @ (X2, 02]) (2.10)
From (2.7) and (2.10) it follows that each of the numbers af[y, o] {Y?)
(y =0, 1, ..., o) can differ from the neighboring one only by the
quantity uq(q =1, ..., D).

Let us order the set of numbers

Uity .oty = K@y Ky + .o+ By by, oy .., B=0,1,2,..)  (2.11)

We shall say that the number ap k) precedes the number
1 gy ey
le" kzlp"'ykl’ lfkl+k2+...+kl<kl +k2 +...+kl,andwhen
ky +ky+ ... tky=k ' +ky,+ ... +k , if the first non-zero differ-
ence k, — kl', ky - kz" N kl' is positive, Among the numbers

(2.11), there can occur numbers which are equal in numerical value. There-
fore we have to renumber them without repetition and without omitting
numerical values. Let us denote them by Br(r =0,1, 2, ...), By = 0.

Let us consider the sum s_ of all the distinct numbers satisfying the
equation

a([x,ol) =B, (r=0,1,2 ... (2.12)

Equation (2.9) shows that (2.12) is a linear Diophantine equation,
while [x, o] depends, according to (2.2), on the order of the numbers &g

The sum of matrices, corresponding to s _of the form (2.1), we shall
denote by S _(p), S (p) <> s, . Making use of these notations, we can re-
write the series (1.11) in the form

0]

FR =S 8@ Q0 +8)=SS L™ (p+B)R(p+8) (@13

r=0 =0

3. Let us study the matrix So(p)Lo_l(p) separately. In the following
section it will be shown that the singularities of this matrix can de-
termine the asymptotic behavior of the solution Y(t) of the system (1.1).
For the most important case, when the coefficients of the equation (1.1)
are real, one can find for every number o  # 0, a number a_+ = - o,

(Re ag = 0). This implies that into the sum S_(p) there will enter as
terms products of matrices of the type (2.1), which have poles of arbi-
trarily high order at the points p = pkO' k by Here we use the

; Lreees
notation
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P iyl = Px, — ko, — kas — ... — ko
(kg=0,4,2,...,¢=0,1,...,1) (3.1)
The numbers p,, p;, py, ... are the roots of the equation

This follows from (1.11) and the definition (1.7) for K (p). The de-
numerable set p,, p;, Py, ... can be arranged in the order of decreasing
absolute values

Rep, > Rep, > Rep, > ..., Re p, = — oo (3.3)

N0

Let us now consider the equation (2.12) that defines s,

a(lx,0l) =0 (3.4)

If the number [Xl' 01] & s, (that is, if the number [Xl' 01] enters
into the sum s;) and if [X2: 02] E sy, then it follows from (2.10) that
[x;» 9 [xp, o) €5,. This means that the solutions [x, o] of equation
(3.4) form a multiplicative semigroup [5}, which we shall denote by W.
The semigroup W is a subsemigroup of the entire multiplicative group [5]
of the numbers [x, o] with the law of multiplication given by (2.5).

A number [x, o] € s, will be called a simple solution of the equation
(3.4) if ally, dd ) #0(y =1, ..., 0 = 1). The sum of all the simple
solutions [x, o] of equation (3.4) we shall denote by so*-

A number [x, o] € so will be called a compound solution of the equa-
tion (3.4) if zero occurs among the numbers a([y, oY) (y =1, 2, ...,
o - 1). Every compound solution of the equation (3.4) can be expressed
in a unique manner as the product of two, three, or more simple solutions
of equation (3.4). The number [0,0] will be defined to be a compound
number. The greater the number of simple solutions in the expansion of a
number [x, o], the greater will be the number of meromorphic factors
Lo'l(p) in (2.1), and the higher will be the order of the poles of the
expression (2.1) at the points p = P; defined by (3.2). The matrices
(2.1) that correspond to the simple solutions sy*, contain only one
factor Lo—l(p).

One can say that the numbers entering into so*, and the number [0,0]
constitute a generating set [5, p.139] of the semigroup ¥. All solutions
[x, o] of equation (3.4) that enter into Sy can be obtained in the

following way from the generating set s,*:
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so = [0, 0] + o + 8o°so” + $p°s"Se" + - . . = [0, 0] + 54754 (3.5)
For the corresponding matrix expressions we obtain
Se(p) =F + 8" (p)So(p),  Sp) =(E—S, (I (3.6)
Let us introduce the matrix D(p) with the aid of (1.8)
D (p) =Ly (p) — Lo (p) o™ () 3.7)

We see that So(p)Lo'l(p) = D" Y(p). From the above considerations we
obtain the following expansion of the type (1.11) for Sy *(p):

S (p) = 2 2 Ka, (DKo, (p+ag) .. Ko (p+ g+ ... +og_,) (38)
0==2 %4
Here k, stands for the expressions q,, q;, ---, q; = 1, 2, ..., 1,

where the 9; satisfy the conditions

Og, +Gg, + ...+, =0 (3.9)
0 € {aq,, aq, + Qqp Gg, + Gg, + gy -+ +y Cg, + Gg, + . .. + 0} (3.10)

For the case a; = - (! =2) in (1.1), the theory of generalized
numbers [x, o] has been applied in [6] for a complete analytic continu-
ation of F(p) in (1.11) to the entire complex plane p.

4. We shall apply the results of section 3 to the investigation of the
stability of a system of equations simpler than that of (1.1) with a
small parameter

n—-10

d"y () d*y (¢t + 0)
X0 4 3| ddon(o, ) =D+
k=0 —h
l Y S d*Y (¢t +9)
—a,t &Y (40 _ .
+pq§=]1e 2 (Aqn(u) -+ Eo_ghqu,,(ﬁ, w X ) 0 (&)

The elements of the matrix Aqk(ﬁ, u) are assumed to be differentiable
a sufficient number of times with respect to p if 0 pu<Cy;. When u = 0,
the system of equation (4.1) degenerates into a system with constant co-
efficients and with a stationary lag in the argument. In this case all
terms, except the meromorphic matrix So(p)Lo'l(p)R(p)|u=o, will disappear
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in the series (2.13) and (1.11). The matrix S;(p} = E when p = 0. The
vector R(p) (1.9) has for its elements the entire functions Q(p) = 0.
When u > 0 is sufficiently small, only the matrix S%(p)Lo-l(p) can have
poles with coefficients in the principal parts of the expansion. From
(3.6), (3.7) it follows that the poles which determine the asymptotic be-
havior of the solutions of the system (4.1), can be found by means of the
equation

Det D (p) = Det (Lo (p) — Lo (p) S0’ (p)) =0 (4.2)

The matrices which occur in (4.2) are defined in (1.8) and (3.8).

The formula (4.2) can be solved directly in one important particular
case,

Let py(w), p, (1), py(u), ... be the roots of the equation (3.2) which
has been constructed for the system (4.1). They are assumed to be con-
tinuous in 0 Cu<y,.

Suppose that for one of these roots p*(u) the following condition is
satisfied

Pk (0) — p* (0) = P+ r=1,2,..., k=0,1,2,...) (4.3)

From (3.8) it follows that the singular points of the terms of the
series Lj(p)S,*(p) can occur only at the points

Pr,r = P (1) — B+ (k=0,1,2,...,r=1,2,3,...) (4.4)

where B_ # 0 when r # 0. If the numbers a;, a,, ..., a; are commensurate,
i.e. if @y =n @i, In8 =0, n_ an integer, then Ip,l>0>0 (=1,

2, ...). ﬁence, for sufficientfy small y, 2> u > 0, € > 0, the matrix
Ly(p)Sy*(p) will be analytic in the circle |p - p*(0)| e, and will have
a norm which is arbitrarily small. The series (3.8) will converge abso-
lutely and uniformly when |p - p*(0)| e, 0 <u<u,. The number of
zeros of the equation (4.2) within the circle |p - p*(0)] < e will be
equal to the multiplicity of the root p*(0). These roots will tend to
p*(0) as p -~ 0.

If there exist non-commensurate numbers among the numbers oy, iy,
.-+, ixy, then Lim |B,] = 0 when r ~ + ®. In the series Ly(p)S,*(p) the
terms will have poles arbitrarily near to p*{(0) for every u # 0. There-
fore, the series (3.8) for L,(p)S,*(p) will diverge in the circle
lp = p*(0)] <e for every u> 0, & > 0.

Nevertheless, the partial sum (3.8) for the series L, (p)Sy*(p) from
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0 =2, to o =0, <o is holomorphic in the circle lp - p'(O)Tﬁg e for
sufficiently small u > 0, € > 0, and for any o, > 2. This makes it
possible to expand the roots of the equation (4.2) in formal series of
increasing powers of u (if the coefficients of the system (4.1) are
analytic functions of u when |u| < uy ).

For the system of equations (6.1) without lag in the argument, one
can deduce the asymptotic nature of these expansions when u - 0 on the
basis of the work [7].

In the more general case of the system (4.1) with stationary lag in
the argument, it is still possible to expand the roots of the equation
(4.2) in formal power series of u (these series usually diverge when
u # 0). The asymptotic behavior of these expansions, when u - 0, relative
to the stability of the solutions has not yet been established.

Example 4.1. We shall find the characteristic exponent of the solution
of the differential equation

&y (¢ dy{t—v
Y8 e =Dt ncos 20y (1) =0 (&.5)
where w # k (k=10, 1, 2, ...), ¢> 0, T> 0. From (1.8) we have

Ly(py=p* + prepe P + 0?, Li(p)=Le(p)=#, =2, y= —0a=2 €4.6)

Equation (4.2), (3.8) takes on the form

2

2
Pt b T — G G @ oW =0 4

From equation (4.7) we find the approximate value p

. ip? ipfcsinte  plecosTe
p=io 4+ 7= T—% + p) - ) + 0 (p¥) (4.8)

For sufficiently small values of lui the solutions of (4.5) will be
asymptotically stable when

ccostw >0 (4.9
and unstable when ¢ cos Tw < 0,

Example 4.2. Let us find the approximate equation of the boundary of
the region of instability of the solutions of the differential equation
with almost periodic coefficients with a lag in the argument

t
d’Z,‘." + pe d’fif” +Ay(0) + 2 D) bycoseyty (#—7,) =0 {4.10)

=1
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Here, ¢ > 0, 4> 0, A=0, u= 0; ¢, A, @, > 0, and Tg =0 are real
numbers. From (1.8) we obtain

Ly (p) = P>+ pep + A, L,y (P) = Lyy (p) = Bb, exp (— Typ) (4.11)

Equation (4.2) takes on the form

Lo/ blexp[—7,(2p+i0)] brexp[—<, (2P — iw,)]
P tpep+ A —pt Z( 2 (p-:i(.o)“ 1 + 2 (p_qim)a g )+

q=1

Equation (4.12) has two roots Py and Py Which become zero when y - 0,
A~ 0. The left side of equation (4.12) is real when p is real and
Re p, # Re P,. Hence on the boundary of the region of instability p = 0,

We thus obtain the following equation {1] for the boundary of the
region of instability:

i

A= —2p2 D) b~ cos (0,7,) + O (1?) (4.13)
q=1

Example 4.3. Let us find the approximate expression for the character-
istic exponent of the system of equations

L
ay (t
dt( ) -4 + 28 D} BycosotY (t—1,) =0 (4.14)

q=1

Here, A4 = (a), a;, ..., @) is a diagonal matrix. Re e, # Re a (q #s),
0 < <wo,<...<q are real numbers. Let us assume that «,
g,
2

1
q = dwp (¢=1, ..., 1) in (4.1). From (1.8), and (4.14) we obtain

Lo (P) EP A L2Q—1 (P) = qu (P) = H-Bq el (415)

Equation (4.2), (3.8) has the for
(4.2), (3.8) orm (4.16)

Dot ( Ly () — Lo (1) 3} (Kaq_y () Kyg (004 + Ko () Ky (p— ) J+owy=0
q=1

From (1.7), (4.15) and (4.16) we obtain approximate expressions for
the roots of the equations (4.18) which lie near to the L In aq =0
p=a, + 23 2 2 pa G W OO0 0 Y00y 6 uy)
s=1 g=1 (4 —a )z t o,
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Here the big) are the elements of the matrix B, B, = I biq)||'

5. Let us consider the case of (1.1) when a, = 0, a =nbi (g =

., 1), where the n_ are integers, i.e. we shall consider the case of
a linear d1fferent1af equation with periodic coefficients and stationary
lag in the argument. The method of [4] is applicable to these equations.
We shall give the most important results which follow from [4].

Theorem 5.1. Let a; = 0, @, =n 81 (g =1, 2, ..., I) where the n_ are
integers. In this case the representation (1.5) of F(p), the transform of
the solution Y(t) of the system (1.1), can be continued analytically over
the entire complex plane p. The components of the vector F(p) are mero-
morphic functions of p which are regular and bounded if the Re p is
sufficiently large. The poles of F(p) are at points Pk of the form

pix = p; + kbi (G=1,23,..., k=0, 1, £2,...) 6.1)
(Repj—v—oowheni—»+oo)

Theorem 5.2. The general solution of the homogeneous (®(t) = 0) system
of equations (1.1) with periodic coefficients and with stationary lag in
the argument (a; = 0, o, = n 8i, n_integers) can be represented under
the condition (1.2), as the asymptotic series (t = + ®)

Y (1) = 2 "' (B;,(t) + tB;, () + . .. + "1 By, (1)) (5.2)
(Rep1>Re;,>Rep,>. .., Rep — —oowhenj— +4 o0)

The vectors B, (t) are regular in some strip along the real axis t,
and are periodic of period 2n6”!. If Re p* > Re p,, then

PO =3 e B +1Bx @ +-.. + B @)} ™ >0 (53
2 =

A special case of Theorem 5.2 was proved in [6].

Note 5.1. The series (3.8) in (4.2) can be continued analytically over
the entire complex plane p using [4, p.595, Lemma 7.1].

Note 5.2. If in the system (4.1) the coefficients are regular func-
tions of | when |ul <. ¥, the roots of the equation (4.2) can be expanded
in series of increasing powers (in general fractiomal) of u. These series
will converge when 0 < |u|<§ €, € > 0, but they can contain negative
powers of |. Suppose that when p = 0 the system of differential equations
(4.1) does not contain terms with a lag in the argument, and has the
characteristic exponents pjo(j =1, 2, ..., mx n). For sufficiently small
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values |u| < €, € > 0, the characteristic exponents p (W) which have the
largest real part are arbitrarily near to pjo. The functions pj(u) will
be bounded when Iul < €. If the pjo satisfy the condition

PR—pOFKO  (h=1,...,mXn k), k=0, £1, £2,...) (5.4)

then dpj(u)/du = 0 when 4 = 0.

6. In this section we extend the method of [4] to equations with
almost periodic coefficients and with a lag in the argument.

Let ro, ry, ..., o, kg, kg, ..., kg be non-negative 1ntegers We in-
troduce the matrix-functions S(P) by means of a matrix series [4,p.590]
of the form

S;: :‘ll '-.-'-'- kE (p) 2 Z KQ: (p + Bko) KQ: (p + Bko + a%) X
a=] Xu
X K(h (p + Bkn + aq; + a"h) e Kqu (p + Bko + aq. + e + aqa_l) (6‘1')
The letter k, denotes various sets of indices q; =1,...., 1 (j=

.., o) satisfying the auxiliary conditions

(@  Pe, +og +ag+ ...+ ag, =B (6.2)
(d) B Bry - - - Bred N {Br, + g, Br, + g, +aq,, . ..

cBrt gt ag, }=A
(©  BroBro- -1 Br} C{Br, + g B, + 0 + 0, - - .

.y Bko+ Qg, +...+ aq,_l}

Here, k k eer, ke, Fgs Ts «eos T denote the ordinals of the
numbers B 1ntroduced in Section 2. The symbols { } denote a set; [} is
the symbol 1nd1cat1ng the intersection of sets; (C is the inclusion sign
for sets; A is the null set of indices; the K (p) are the matrices from

(1.7).

Making use of the notation (6.1), the series (1.11) can be written in
the form

F(p)=2 (p) + Z] S () Q(p + B) (6.3)

From (6.2) it follows that the larger the lower indices, the "better"
will be the convergence of the series (6.1), in the sense that terms
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that do not satisfy the auxiliary condition (b) of (6.2) will drop out
of the series (6.1)

As was done in [4], one can prove relations which generalize the
Lemma (7.1 of [4, p. 595] for functions S(p) of the definition (6.1).
These relations make it possible to express the matrix-function S(p) by
means of a matrix-function with an additional lower index vy.

We now give the final formulas for the three possible cases:

(A) Suppose y =k, # k,, k

k_,; then

g1 ey Ry

Sko ks s kg (D) = (E = S8 k. kg (D) Sk ke, o kg v (P) (6.4)

(B) Suppose y = r # ky, k|, ..., kg, then

(6.6)

If the numbers «_are commensurate (Section 5), then these relations
make it possible to analytically continue the series (1.11), (6.3) over
the entire complex plane p. This leads to Theorem 5.1.

The equation (4.2) for the determination of the singularities of the
representation F(p) takes on the form

Det D (p) = Det (Lo (p) — Lo (p) o0 (p)) =0 (6.7)
in the notation of (6.1).

Let us consider the problem on the stability of the solutions of the
system (4.1) in the case when the condition (4.3) is not satisfied. That
is, let, e.g.

0y (0) — po(0) =By (y #0), Pk (0) —po (0) FBr(k=2,3,..., r=1,2,...) (6.8)

In this case it is convenient to use, in the solution of (6.7), a
formula which follows from (6.6)

Lo (p) So0 (p) = Lo (p) 85,0, v (P) + Lo (P) S5, 0.+ (P) (6.9)
Lo (P +By) — Lo (p +Bv) S 0,v (0)1 Lo (p + By) SY, 0.+ (0)
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Any finite partial sums of the series on the right-hand side of (6.9)
are regular in p and p within the reglon lp -p (0)‘<:e, Iu‘ < g, when
e > 0 is small enough. The matrices L~ p+ B ?(ﬁo 0), and L -l(p‘*ﬁ ),
i.e. those which have a s1ngular1t¥ at the point p = po(O) do not occur
among the matrices of the form L (p + B,) which enter into the series
of the right-hand side of (6.9).

Example 6.1. Let us find the boundary of the region of instability of
the solutions of the differential equation

d’gti ) - Ay (t) | 2pma cos 2ty (t — v1) + 2ub cos &y (¢ —vg) = (6.10)

when A= 1, u= 0; A, u>0, T, >0, T, > 0 are real parameters.
From (1.1) we have [ = 4, ay = 0, oy =—-ay = 2i, a3 = -, = 41,
From (1.8) we obtain

Lip)=r+% L@ =L(p)=pe?s,  L(p)=L(p)=pbe P (641

Let us compute the numbers B, B, = 0

=B1=2i, Ga=By=—2i, wg=PRs=4i, du=fi=—4i, 2m=0p
-t aa=0, otos=B=6{, o1F+og=0, 203=205... etc.

From (6.8) we find p;(0) =V (-A) = i, p,(0) = —i, py - p; = - 2i = P,.
We construct linear combinations of the form (2.11) which yield Bo and
By. We obtain

gt a=ata=a-tag=a+dg=... =8, (6.12)
=0 F ==t =...==0Bs

The combination a, + «; does not satisfy the condition (b) of (6.2)
for the function Sg 0 Y(P)'

The equation (6.7), in combination with (6.9), takes on the form

{Lo (P} — Lo (P) [ K1 (P) Kz (P + 20) + Ks (p) Ka (p+ 4i) + Ka (P) Ks (p— &) +. .. ]} X
X {Ly (p—2i) — Lo (p — 20) [Ka (p — 20) K1 (p — 433 + K3 (p— 20) Ka (p+ 2i) +
+Eilp—20)Ks(p—6i)+...} = (6.13)
={Ly (P) [K2 (P) + K1 (P) Ka(p+ 20) + K () Kx (p—4i) + .. . ]} X
X{Ly(p—2)) [Ki(p—20) + K3 (p—20) + Ka(p—20) + Ko (p— 2)) Ks (p—4i) + ... |}

In (6.13) all series are written out with an accuracy within infinite-
simals of the order O(uz). inclusive. Making use of the scalar nature of
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the functions Lq(p) (6.11), we could eliminate the denominator in (6.7)
and (6.9) and obtain the equation (6.13). After substitution of the ex-
pressions (1.7) (6.11) into (6.13), we obtain an explicit equation for
the characteristic exponents p. From the condition of the negativeness
of the real parts of the roots of the equation (6.13) near to i, we
obtain

2,3 g a 3 2
(l.— 1+&§- cos41:1+&g— cos? 21,) > (p.a -+ p,:b cos 2 (T3 — T1) cos (tg+21:1)) +0(1)
(6.14)

The condition (6.14) is only necessary, but it is not sufficient for
the stability of the solutions of (6.10).

A7. We shall try to find an asymptotic (with u — 0) criterion of sta-
bility of the solutions of a linear differential equation with almost
periodic coefficients [7]

U +pfa ) T5+ pAO, b+ pf @)y =0 (7.1)

Here, A, n >0 are real parameters; the f,(t) are real functions

(7.2)

l
K@= Daa@e™d =012, o =0, «,=0i O,40,q+h)
=0

where a_,(u) are sufficiently often differentiable functions of u, and
the 8q(¢=1,..., 1) are arbitrary real numbers. From (1.8) we obtain
(7.3)

Ly (p) = (1 4 pae) p* + nanp + A + pag, Ly (p) = B (ae2p® + aqp + ago)

Just as was done in [4, p.598], we form the equation (6.7) for the
determination of the characteristic exponents. The conditions of the
negativeness of the real parts, and the application of the results of
[7] lead to the next theorem.

Theorem 7.1. Let the "resonance" case be given when ~2idA =g, #0.
In order that the solutions of (7.1) be asymptotically stable for suffi-
ciently small values of u(0 < u e,), it is sufficient that the next
two conditions be fulfilled when 0< u <é&;:

h () = lim pe? Rn% dt >0 (7.4)
[H]

gt M) = ey (i V7) —|dy (lVX_) >0 (7.9)
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The solutions of (7.1) will be unstable if A(u) < 0 or &y (u, A} <0,
If h(u) = 0, or g{u, A) = 0, we have the doubtful case.

Here we have used the notations of (6.1)

ey (p) = Lo (p) — Lo (p) 80,07 r, dy (p) = L, (p) So.0.x(p) (7.6)

Note 7.1. 1f =2id A #B_ (y =1, 2, ...) in (7.1), then the solutions
of (7.1) are stable when h(n) > 0, and they are unstable when h(W) <o.
The stability is considered in the asymptotic sense when u = 0.

Note 7.2. The series im (7.5) diverge when i > 0. The imequality (7.§)
is taken in the asymptotic sense when u — 0, u > 0. It is considered to
be satisfied if the first non-zero coefficient of the expansion gy(u. A)
in powers of u is positive,

Note 7.3. The condition (7.5) can be found from the condition of the
existence of an almost periodic solution of the equation (7.1).

Example 7.1. Let us consider the stability of the solutions of the

equation

¢>0 ) a.n

m3+”c +ﬁ+&wmm¢+&wmmmy 0 (p>0
where«ol, ©, are rationally non-commensurate real numbers. From (1.1} we
have the case when o; = - oy = e, a3 = - a, = iw,. The resonance values
=-~0.25 P 2 form by (2.11) a denumerable and everywhere dense (when

A > 0) set of numbers of the form

}”'Y = — 0255.{3 == (.25 (klﬁ)g + kg&)g)ﬁ (Iq, kg = 0, =4 ’1, + 2, ‘e ) (7.8}

When ¢ > 0, one can attach to the axis 4 = 0 only a finite number of
regions of instability. The order of the width of the regions of insta-
bility (7.7) which touch A, 1is equal to oqu sl Tikty

From (2.11) we obtain
Bo=0, Bi= iwy, Ba==~ i1, Ps= iws, B¢=—iwz, PBs=2imy, PBs=1i(m+ w01),...
Let
A=A =0250,.% A=M=0. A==t =025(0;+0,)?

The nontrivial condition of stability (7.5) takes on the form
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(h—0.2502 + 25 4 =2t 1 0 (w9 >0 (7.9)
22 oul 2 [l
(=0 — s + =) —-—g;.-+0<u°>>0 (7.10)
- 3 _ 2p? - 2p 2
(?“ 0.25 (0, + o) @1 {01 + 2mg) Wy {0 + 2@1)) - mffm" +0®)>0
{7.11)
If one considers the equation
d%y
gt A +uf@)y=0 (7.12)
where f(t) is a real function of the form
!
F(t) = D) (g cosmgt + by sinw,t) (7.13)

a=1
then, on the basis of Theorem 7.1, one can prove that to every resonance
value A, u=90
Y
Ay = — 0.25 8,2 = 0.25 (k) + 0ok + . . . + ok)? (7.14)
(kg=0,41, £2,..))

one can attach {(for p > 0) a region of asymptotic instability of the
solutions. The width of the region of instability will hereby be of the

order O(p gﬂ Y).
The symbol Rgﬁy here is given by

Rg By = min (| k| + 1k + ...+ &) (7.15)

under the condition that

i(mxkl +m2k2 T ﬁ);k‘) = By

The problem of sufficient conditions for the stability of the solu-
tions of the equation (7.12) has not been solved as yet for the general
case, to the knowledge of the author. The method proposed in this section
for the investigation of the stability of the solutions of (7.1) does
not contain any new principles if it is compared to [7), but it is more
convenient to use in concrete computations.

Example 7.2. The solutions of the differential equation

d*y
P Tol -+ 210 cos oyt =57 dt (A4 2ucoswat)y =0 (7.16)
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where p > 0, and @y, @, are rationally non-commensurate and are not stable
when A ~ 0.25 o,® if

2 3 2 2 2 2 2
("— “2 ——s‘*‘“rﬁ*-o(u‘)) <(E%l—+0(p3)) (7.17)
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